Cyclic Covers of the Projective Line, Their Jacobians and Endomorphisms

نویسنده

  • YURI G. ZARHIN
چکیده

ζp ∈ C. Let Q(ζp) be the pth cyclotomic field. It is well-known that Q(ζp) is a CM-field. If p is a Fermat prime then the only CM-subfield of Q(ζp) is Q(ζp) itself, since the Galois group of Q(ζp)/Q is a cyclic 2-group, whose only element of order 2 acts as the complex conjugation. All other subfields of Q(ζp) are totally real. Let f(x) ∈ C[x] be a polynomial of degree n ≥ 5 without multiple roots. Let Cf,p be a smooth projective model of the smooth affine curve y = f(x).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Endomorphism Rings of Jacobians of Cyclic Covers of the Projective Line

Suppose K is a eld of characteristic 0, Ka is its algebraic closure, p is an odd prime. Suppose, f(x) 2 K[x] is a polynomial of degree n 5 without multiple roots. Let us consider a curve C : y = f(x) and its jacobian J(C). It is known that the ring End(J(C)) of all Ka-endomorphisms of J(C) contains the ring Z[ p] of integers in the pth cyclotomic eld (generated by obvious automorphisms of C). W...

متن کامل

Explicit Descent for Jacobians of Cyclic Covers of the Projective Line

We develop a general method for bounding Mordell-Weil ranks of Jacobians of arbitrary curves of the form y = f(x). As an example, we compute the Mordell-Weil ranks over Q and Q( √ −3) for a non-hyperelliptic curve of genus 8.

متن کامل

Endomorphism algebras of Jacobians

where K is a subfield of even index at most 10 in a primitive cyclotomic field Q(ζp), or a subfield of index 2 in Q(ζpq) or Q(ζpα ). This result generalizes previous work of Brumer, Mestre, and Tautz-Top-Verberkmoes. Our curves are constructed as branched covers of the projective line, and the endomorphisms arise as quotients of double coset algebras of the Galois groups of these coverings. In ...

متن کامل

Field of moduli versus field of definition for cyclic covers of the projective line

We give a criterion, based on the automorphism group, for certain cyclic covers of the projective line to be defined over their field of moduli. An example of a cyclic cover of the complex projective line with field of moduli R that can not be defined over R is also given.

متن کامل

The existence totally reflexive covers

Let $R$ be a commutative Noetherian ring. We prove that  over a local ring $R$ every finitely generated $R$-module $M$ of finite Gorenstein projective dimension has a Gorenstein projective cover$varphi:C rightarrow M$ such that $C$ is finitely generated and the projective dimension of $Kervarphi$ is finite and $varphi$ is surjective.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008